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Abstract. Negative samples, whose class labels are not included
in training sets, are commonly classified into random classes with
high confidence and this severely limits the applications of tradi-
tional models. To solve this problem, we propose an approach called
Negative-Aware Training (NAT), which introduces negative samples
and trains them along with the original training set. The object func-
tion of NAT forces the classifier to output equal probability for each
class on negative samples, other settings stay unchanged. Moreover,
we introduce NAT into GAN and propose NAT-GAN, in which dis-
criminator distinguishes between both generated samples and nega-
tive samples. With the assist of NAT, NAT-GAN can find more accu-
rate decision boundaries, thus converges steadier and faster. Experi-
mental results on synthesis and real-word datasets demonstrate that:
1) NAT gets better performance on negative samples in accordance
with our proposed negative confidence rate metric. 2) NAT-GAN
gets better quality scores than several traditional GANs and achieves
state-of-the-art Inception Score (9.2) on CIFAR 10. Our demo and
code are available at https://natpaper.github.io.

1 Introduction
Deep neural network has shown dramatic performance in various
tasks [12, 18, 20, 5]. Despite its high performance, deep neural net-
work is still delicate in dealing with negative samples. Negative sam-
ples – classes of which are not included in training set (we refer sam-
ples in training set as positive samples) – are commonly predicted to
random classes with high confidence. This phenomenon frequently
occurs in real-world applications, which becauses training set cannot
always contain all the classes in the real environment. As shown in
Figure 1 (right), well-trained networks are expected to output uni-
form probability distribution on samples with unknown classes. In
practice, however, their outputs are often like what shown in Fig-
ure 1 (left). Unfortunately, this can be a serious problem in some
real-world applications. Take self-driving cars as an example, it may
cause a terrible accident if the classifier predicts an object to ran-
dom label with high confidence, however unknown is common as
the classifier doesn’t know all exist classes. This problem can never
be solved by adding more classes into the training set because the
black swan event always happens. We surprisingly found that a net-
work trained on CIFAR 10 with 95.54% accuracy predicts 97.1%
samples from CIFAR 100 over 0.4 confidence, and 55.8% over 0.9
confidence. What’s more astonishing is that this even happened on
random noises.
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Figure 1: Network predicts random labels (left) as it is unaware of
negative samples, but with negative-aware training, the network pre-
dicts uniform distribution (right) which indicates the class is not
known.

Formally, let X be the domain of positive samples in training set
and Ω be the domain of all the positive samples and negative samples.
The domain of negative samples can be written as Ψ = Ω−X . The
classifier F is trained to map X to χ, which is the target labels of X .
If F is unaware of the negative domain, it will map Ω = X + Ψ to
χ, but F should map Ψ to ψ as we expected, where ψ is the negative
prediction, the information of Ψ should be taken into consideration.

Taking both the positive and negative samples into consideration
is similar to discriminator of Generative adversarial nets (GANs) [4],
which seek to distinguish real (positive) samples from fake (negative)
samples. GANs have shown promising results in various challenging
tasks, such as realistic image generation [15, 23], conditional image
generation [7, 8], and image manipulation [25]. Some GANs exploit
label information and get more inspiring results [10, 19, 16, 24].
There are various works aiming at improving the performance of
GAN, such as Wasserstein distance [1], spectral normalization [13],
large batchsize [2], and evolution [21].

The key to address the random prediction problem stated above
lies in how to use negative samples. Treating negative samples as a
new class is one simple approach. GANs such as AM-GAN [24] and
SGAN [19] train discriminators in this way, but it results in a bad
discriminator and brings new problem for supervised learning – un-
balanced classification, which caused by the large mount of negative
samples, and thus hurts the performance. CatGAN [19] optimizes the
entropy of all classes, which is similar to our proposed NAT-GAN,
but NAT-GAN not only steps further but also is simpler. We argue
that entropy constraint actually alleviates the unbalancing problem.
Our approach sets clear targets for both negative and positive sam-
ples, and adds external negative samples to assist the discriminator,
which will guide the network to learn X and Ψ well and help the
generator converge better.

The contributions are summarized as follows:

1. We propose a training approach called Negative-Aware Training
(NAT), which introduces negative samples into supervised learn-
ing and forces classifiers to output equal probability on negative
samples. With NAT, the problem of classifier predicts random la-
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Figure 2: Negative-Aware Training model. It makes a certain prediction on positive samples (yellow) and leads to peaked conditional class
distribution, uncertain prediction on negative samples (blue) and leads to a uniform distribution.

bels with high confidence on negative samples can be addressed.
Moreover, we propose a metric called Negative Confidence Rate
to evaluate the classifiers’ performance on negative samples (Sec-
tion 2.1).

2. By introducing external negative samples into GAN, we propose
NAT-GAN. The negative information helps the discriminator find
the decision boundary easily and allows the generator to converge
faster and steadier. Moreover, with the help of negative samples,
the distribution generated by NAT-GAN is better than that gener-
ated by the original GAN, thus improving the qualities of gener-
ated samples (Section 2.2).

3. Extensive experimental results on synthesis and real-word datasets
not only demonstrate the generalization and superiority of NAT,
but also indicate that NAT-GAN converges steadier and faster, out-
performs several competing GANs, achieves state-of-the-art In-
ception Score (9.2) on CIFAR 10 (Section 3).

2 Methodology

2.1 NAT on supervised classification

The output probability distributions—as we focus on classification
task and softmax is commonly used to produce probability for each
class—are the network confidences on specific data. The network
is forced to produce correct labels with probability 1 on positive
samples, and produce equal probability on negative samples, whose
confidences of all classes are 1/c, where c is the number of train-
ing classes. 1/c is the lowest bound of probability prediction can
be reached and also is the ground truth of negative samples on su-
pervised classification. It is highly intuitive and the distributions of
positive and negative are more separate. From the perspective of in-
formation theory, we minimize the entropy of positive prediction and
maximize the entropy of negative prediction. The approach we pro-
posed is called Negative-Aware Training (NAT) and is illustrated in
Figure 2.

Formally, the original network classifies the negative samples Ψ as
ordinary data as it is unaware of negative samples Ψ, which means
in training we learn F(X) → x, but in practice, we do F(Ω) and
that results in F(Ψ) → x. Our approach involves negative samples
during training and forces network to produce 1/c for each class and
that gives rise to negative-aware network. The information of neg-
ative samples Ψ and positive samples X are known, the domain of
negative samples Ψ is learned and such that F projects Ψ to ψ, not
to χ.

Original training settings and cost function stay unchanged, which
means we don’t need to change the network architecture and hyper-
parameters. Both positive samples and negative samples are jointly
trained but with different strategies. Classification cost function, like

cross entropy, stays unchanged while cost function on negative sam-
ples, e.g., KL(Kullback-Leibler) divergence, forces the network to
produce 1/c for each label. Thus, the overall cost function can be
written as:

JNAT =
1

n

n∑
i=1

(LposIpos +D(ŷneg ‖ yneg)Ineg) , (1)

where neg and pos indicate negative and positive samples. Lpos is
the original loss function for positive samples, ŷneg is the output
probability on negative samples, yneg is ground truth:

ŷneg(i) =
exp (oi)∑n
i=1 exp (oi)

, (2)

yneg =

(
1

c
, . . . ,

1

c

)T

, (3)

where c is the number of classes, o is the network output. D is the
distribution distance metric which measures the similarity of output
distribution ŷneg and yneg , and can be customized for specific tasks.
KL divergence is used in our work:

KL(yneg‖ŷneg) =

c∑
i=1

yneg(i) log
yneg(i)

ŷneg(i)

. (4)

One may ask: can similar classes be used as negative? We argue
that, if one evaluates the classes are similar and expects the classi-
fier to output information about it, then that class should NOT be
used. For example, if one views cat and leopard are different classes,
then the negative relation is established, otherwise, cat and leopard
are not negatives relation if one expects the classifier outputs similar
distributions. The negative relation is judged by human.

Evaluation Metric. In order to measure the classifier’s perfor-
mance on negative samples, we define Negative Confidence Rate
(NCR) as follows:

NCRt =
1

n

n∑
i=1

I(max(ŷneg) > t), (5)

where n is the number of negative samples and t is the threshold.
NCRt indicates the ratio of maximum confidence over threshold t,
bigger NCRt means poorer performance on negative samples.

2.2 NAT on GAN
Training categorical GAN is much similar to classification with NAT,
generated samples are negative Ψ and real data is X , but discrim-
inator still meets two problems. First, generated samples distribu-
tion is not ideally covered Ψ as we expected, because the generator
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Figure 3: NAT-GAN generates robust decision boundary compared with original GAN. Original GAN is learning the boundary between
generated and real distributions at the beginning of adversarial procedure (a, green), what NAT does is provide prior knowledge of real
boundary (a, red). The generator is better (b) but the original boundary is poor as the distribution on the right, where located another negative
distribution, is still encouraged. That may provide temporary wrong gradient information and results in (c), the generated distribution shifting
to the right side and the boundary changed dramatically. NAT, however, is more robust with the help of negative information. In the end,
generated distribution matches the real distribution well (d), but NAT assists with a steady adversarial procedure, and GAN converges faster
and more accurate. This experiment is displayed in Figure 5.

is learned from discriminator and aims to fool discriminator, which
means negative samples can still fake discriminator in practice. Sec-
ond, generated distribution is shifting during learning and thus the
classification boundary is changing with regard to generator, which
results in poor discriminator and poor gradient information (shown
in Figure 3).

Generator’s goal is to minimize the distance of real and fake, here
we use KL(pdata‖pG). Since we introduce negative samples and that
leads to conditional probability, distance between pdata and pG|neg

is smaller than pdata and pG, then:

KL(pdata‖pG|neg)

= pdata log pdata − pdata log pG|neg

≤ pdata log pdata − pdata log pG

= KL(pdata‖pG).

(6)

AM-GAN introduces an additional fake class, which leads to the
discriminator suffers from the unbalanced classification problem. We
propose NAT-GAN, based on AM-GAN and CatGAN, and removed
the additional fake class, target probability distribution of negative
samples is set explicitly, which is 1/c for each class. Note that gen-
erated samples are negative as well. In NAT-GAN, external nega-
tive samples are added to train discriminator and further improving
the performance of generator. The main difference between CatGAN
and NAT-GAN is the discriminator, we explicitly add external neg-
ative samples to train discriminator, meanwhile, the generator stays
unchanged (see Figure 2).

Generator loss function of AM-GAN and NAT-GAN is:

LG = E(x,y)∼G[H(Υ(y), D(x))], (7)

where Υ(y) is target distribution and given by dynamic labeling [24]:
y = argmaxi∈{1,...,c}Di(x), Υi(y) = 1 if i = y, else Υi(y) = 0.
H is the cross entropy,G andD indicate generator and discriminator,
D(x) is the output of discriminator on x.

Discriminator of original AM-GAN is:

LAM−GAN
D = E(x,y)∼pdata

[H(Υ(y), D(x))]

+Ex∼G[H(Υ(c+ 1), D(x))],
(8)

where c is number of positive classes, we remove the additional class
and minimize the KL divergence between output and target distribu-

tion:

LNAT−GAN
D = E(x,y)∼pdata [H(Υ(y), D(x))]

+Ex∼G,neg[KL(Υneg ‖ D(x))],
(9)

where Υneg = (1/c, . . . , 1/c)T .
Generator and discriminator losses of CatGAN are:

LCatGAN
G = −E(x,y)∼G[H(Υ(y), D(x))]

+Hx∼G

[
1

M

M∑
i=1

D(x)

]
,

(10)

LCatGAN
D = E(x,y)∼G[H(Υ(y), D(x))]

−E(x,y)∼pdata [H(Υ(y), D(x))]

+Hx∼pdata

[
1

N

N∑
i=1

D(xi)

]
,

(11)

whereM andN are numbers of samples, the last items of LCatGAN
G

and LCatGAN
D are marginal class distributions [19], they explicitly

optimize the diversity of generated samples.
NAT-GAN alleviates the overfitting on fake class. Let l be the out-

put logits vector and σ(l) = D(x) be the softmax probability distri-
bution, Υ be the target probability distribution, then:

−∂H(Υ, σ(l))

∂l
= Υ− σ(l), (12)

For AM-GAN, the object function punishes Υc+1−σ(l)c+1 for gen-
erated samples and that results in unbalance on c+ 1-th class. How-
ever, NAT-GAN and CatGAN punish the weights of all classes, that
alleviates the overfit on additional fake class and assists with steady
gradient information.

Evaluation Metrics. Inception Score (IS) [17] is well correlated
with human evaluation, AM Score[24] is proposed to measure the
quality of generated samples as a compensation of IS. They are cal-
culated via:

Inception Score = exp
(
Ex∼G[KL(C(x)‖CG

)]
)
, (13)

AM Score , KL
(
C

train ‖CG
)

+ Ex[H(C(x))], (14)

where C
G

= Ex[C(x)] is the overall probability distribution of the
generated samples over classes judged by C. AM Score requires C

G



Table 1: CIFAR 10 and SVHN NCR results

Positive CIFAR 10 SVHN

Negative
CIFAR 100 CIFAR 100 ILSVRC Random CIFAR 100 CIFAR 100 ILSVRC Random
Train Set Test Set Noise Train Set Test Set Noise

NCR0.4
baseline 0.960 0.971 0.949 0.736 0.928 0.934 0.921 0.944

NAT 0.028 0.072 0.063 0 0.0003 0.003 0.002 0

NCR0.6
baseline 0.817 0.839 0.764 0.145 0.727 0.738 0.706 0.760

NAT 0.012 0.045 0.036 0 0.0001 0.001 0.0009 0

NCR0.8
baseline 0.649 0.671 0.563 0.006 0.520 0.530 0.489 0.561

NAT 0.005 0.026 0.019 0 0 0.0008 0.0005 0

NCR0.9
baseline 0.534 0.558 0.434 0.0001 0.388 0.402 0.357 0.429

NAT 0.002 0.018 0.012 0 0 0.0006 0.0004 0

close to C
train

and each sample x has a low entropy C(x). The min-
imal value of AM Score is zero and the smaller the better. Incep-
tion Score requires each samples distribution C(x) different from
the overall distribution of the generator C

G
, which indicates good

diversity and quality over the generated samples. Steady and smooth
gradient information is given as the discriminator loss of ours explic-
itly punishes KL divergence between distributions of real and gen-
erated, but generator optimizes KL divergence, and this adversarial
procedure matches the goals of Inception Score and AM Score.

FID [6] compares the statistics of generated samples to real sam-
ples:

FID(x, g) = ‖µx − µg‖22
+ Tr

(
Σx + Σg − 2 (ΣxΣg)

1
2

)
,

(15)

where x is short of x ∼ pdata and g is short of x ∼ G. µ,Σ,Tr are
mean, covariance and diagonal elements sum respectively. FID mea-
sures the quality and diversity of generated samples and is sensitive
to diversity especially.

3 Experiments

3.1 NAT classification

CIFAR 10 [11] and SVHN [14] are image datasets with 10 classes
and used for our classification task. CIFAR 100 training set is used
as negative samples during training. Three datasets will be tested af-
ter training: CIFAR 100 test set, selected data samples from ILSVRC
2012 [3] (resized to 32, refered as ILSVRC), and random noises gen-
erated from standard normal distribution, they are all normalized.
Baseline networks are trained only on CIFAR 10 training set, and
the networks with NAT setting trained both on CIFAR 10 training set
and CIFAR 100 training set (as negative samples). We use ResNet 18
[5], and set thresholds of NCR from {0.4, 0.6, 0.8, 0.9}, batch size
is 128, and there are 5 to 25 random selected negative samples per
batch.

Table 1 displays the NCR results. and the Figure 4 shows the max-
imum prediction of each network on CIFAR 100 test set. The supe-
riority of NAT is clear, baseline predicts negative samples with high
confidence while the network with NAT setting performs well not
only on CIFAR 100 training set, but also on other unseen datasets,
that demonstrates the generalization of NAT. Surprisingly, the net-
work with NAT even got 0% NCR on random noise in our exper-
iments, but the results vary on different conditions. Meanwhile, the
performance of the original classification task still holds, baseline got

A
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NCR 0.6

NCR 0.8

NCR 0.9

Figure 4: The maximum predictions of baseline (blue) and NAT (red)
on CIFAR 100 test set. Most predictions of baseline are of incorrect
high confidences, while NAT is more robust on negative samples.

Table 2: CIFAR 10 NCR results of 8, 32, 64 negative samples per
batch (batch size 128)

# per CIFAR 100 CIFAR 100 ILSVRC Random
batch Train Set Test Set Noise

NCR0.4 0.123 0.155 0.218 0.142
8 NCR0.6 0.077 0.111 0.154 0.001

NCR0.8 0.045 0.073 0.104 0
NCR0.9 0.029 0.052 0.076 0
NCR0.4 0.025 0.087 0.139 0.082

32 NCR0.6 0.010 0.059 0.099 0.002
NCR0.8 0.004 0.039 0.069 0
NCR0.9 0.002 0.027 0.051 0
NCR0.4 0.010 0.082 0.132 0.608

64 NCR0.6 0.003 0.054 0.093 0.144
NCR0.8 0.001 0.035 0.064 0.011
NCR0.9 0.0003 0.027 0.047 0.008

Table 3: NCR overfit results trained on CIFAR 10 and ILSVRC sam-
ples

Test Sets ILSVRC ILSVRC CIFAR 100 Random
Train Test Noise

NCR0.4 0 0.079 0.597 1
NCR0.6 0 0.047 0.464 1
NCR0.8 0 0.025 0.349 0.051
NCR0.9 0 0.014 0.262 0



Table 4: Comparison of IS, AM Score and FID

Dataset Setting IS AM Score FID

CIFAR 10 SN-GAN[13] 8.22 - 21.7
MMD-GAN[22] 8.29 - 16.21
AM-GAN 8.88 0.073 13.49
CatGAN 0 9.02 0.085 14.20
CatGAN 1 9.06 0.078 15.27
CatGAN 3 9.05 0.078 14.89

CIFAR CatGAN 10 9.08 0.078 15.43
NAT-GAN 0 9.11 0.056 13.03
NAT-GAN 1 9.21 0.034 15.12
NAT-GAN 3 9.26 0.043 14.58
NAT-GAN 10 9.25 0.036 15.09
AM-GAN 5.91 0.641 43.85
CatGAN 0 10.46 0.453 28.93
CatGAN 1 10.66 0.444 29.07

Tiny-ImageNet CatGAN 3 10.65 0.446 28.63
subset CatGAN 10 10.60 0.452 28.38

NAT-GAN 0 11.48 0.440 25.54
NAT-GAN 1 11.60 0.436 24.52
NAT-GAN 3 11.78 0.428 24.38
NAT-GAN 10 11.73 0.436 25.02

95.54% test accuracy and NAT got 95.03%. Treating negative sam-
ples as additional class suffers greatly from unbalancing problem, it
got 91% accuracy and overfit severely.

We also evaluate the performance of network trained on CIFAR
10 and ILSVRC samples, as shown in Table 3. And the ratios of
negative samples, which are 8, 32, 64 negative samples per batch and
shown in Table 2. An observation is that high performance requires
high quality negative samples. Overfit on negative will occur if the
negative is much different with positive, CIFAR 100 is better than
ILSVRC samples for training CIFAR 10 in our experiments. For the
ratio of negative, the overfit is neglectable as long as the positive
samples hold the major percentage.

3.2 NAT-GAN
3.2.1 1D NAT-GAN

We easily verify the performance of NAT-GAN on 1 dimension GAN
as shown in Figure 5 and NAT website. Prior information of negative
distribution assists with robust gradient information and steadier ad-
versarial procedure. The decision boundary is learned faster and the
generator converged better compared with original GAN, decision
boundary of which is noisy and shifting rapidly.

The quality of negative distribution is important, if there are more
available negative distribution, the adversarial procedure is not only
faster but also alleviates the fluctuation.

3.2.2 NAT-GAN on images

Further, we evaluate NAT-GAN on CIFAR 10 dataset, in which CI-
FAR 100 is the negative dataset, and a subset of Tiny-ImageNet, in
which the first 100 classes are positive, and the last 20 classes are
negative. NAT-GAN shares the same setting with AM-GAN, but the
discriminator of ours removed the additional fake class, and use KL
divergence to minimize the distribution distance of fake data out-
puts and target distribution, which is 0.1 on CIFAR 10, and 0.01 on
Tiny-ImageNet. The optimizer is Adam(beta1=0.5, beta2=0.999) [9],
batch size is 100, and initial learning rate is 0.0004.

We experimented several settings with different numbers of nega-
tive samples, AM-GAN, CatGAN, CatGAN X, NAT-GAN X, X in-
dicates number of negative samples per batch, in NAT-GAN 3 we

add 3 external negative samples one batch. In NAT-GAN 0 we didn’t
add external negative samples and is similar to CatGAN but sim-
pler. We found that AM-GAN won’t converge with external negative
samples per epoch because it suffers from unbalancing problem. The
evaluation metrics are AM Score, FID and Inception Score, better
generated samples achieve lower AM Score and FID but higher In-
ception Score.

As shown in Table 4, NAT-GAN surpasses AM-GAN on AM
Score and achieves state-of-the-art Inception Score (over 9.2) on CI-
FAR 10, and can be further improved with longer training. However,
it is slightly weaker on FID due to the constraint of negative, which
means the diversity is decreasing, but still outperforms other methods
without negative, like SN-GAN(21.7) [13] and MMD-GAN(16.21)
[22], and our NAT-GAN 0 got best FID (13). The quality of gener-
ated samples is improved as negative samples provide prior knowl-
edge, and that made a stronger generator compared with counter-
parts. We observed that the IS becomes worse (9.03) if add too much
– like 20 – external negative samples as the negative regularization
severely hurts the diversity. Losses of generators on multiple datasets
are shown in Figure 6, which demonstrates that negative information
assists with better convergence.

4 Conclusion

We study the function of negative samples in supervised classifi-
cation and GAN, and propose a training strategy called Negative-
Aware Training (NAT) and NAT-GAN, both positive samples and
external negative samples are jointly trained. Cost function on nega-
tive samples, which is distribution metric like KL divergence, forces
the network to output equal probability, and original architecture and
settings stay unchanged. 1) The network with NAT is more robust
and neutral, addresses the problem of random prediction on negative
samples with high confidence and holds the performance on origi-
nal classification task, and helps the application in practice. Exper-
iments on CIFAR 10 and Tiny-ImageNet shows that with NAT, the
network performs well both on negative samples used for training
and on other negative samples based on proposed Negative Confi-
dence Rate (NCR), and demonstrates the generalization of NAT. 2)
Our NAT-GAN, based on CatGAN and AM-GAN, uses both exter-
nal negative samples and generated samples to train discriminator.
The external negative samples assist with steady adversarial proce-
dure and better boundary information, help GAN convergence faster
and achieve inspiring state-of-the-art AM Score and Inception Score
(9.2) on CIFAR 10.

Collecting negative samples requires less and weak human knowl-
edge compared with positive samples. And when collecting positive
dataset is needed in real application, it is trivial to collected negative
samples in the meantime. Negative samples provide prior knowledge
and boundary information, but the measurement of how good are
negative samples is still an open question, further application and
expansion on other tasks will be studied in future work.
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Figure 5: Comparison of NAT and original on 1D GAN. Negative distributions assist generator to learn faster and steadier, the demo video is
available on NAT website (and also 2D GAN).

Figure 6: Generator losses of NAT-GAN on multiple datasets.
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